Section 2.3, problem 28:
\[G(x) = 0 \implies (x + 2)^2 - 1 = 0 \implies (x + 2)^2 = 1 \implies x + 2 = \pm\sqrt{1} = \pm 1 \]
\[x + 2 = -1 \implies x = -3 \quad \text{or} \quad x + 2 = 1 \implies x = -1. \]
Conclusion: the zeros of \(G(x) = (x + 2)^2 - 1 \) are \(x = -3 \) and \(x = -1 \) and these are also the \(x \)-intercepts of the function.

Section 2.3, problem 102: The area of the rectangular window is 306 and the dimensions of the window are \(x \) centimeters (width) and \(x + 1 \) centimeters (length). This leads to the equation
\[x(x + 1) = 306 \implies x^2 + x - 306 = 0 \implies (x + 18)(x - 17) = 0 \implies x = -18 \text{ or } x = 17. \]
The negative solution \(x = -18 \) doesn’t make sense as a width, so the width of the window is \(x = 17 \) and its length is \(x + 1 = 18 \).

Section 2.4, problem 72: Find the quadratic function \(f(x) \) by using the form
\[f(x) = a(x - h)^2 + k \]
where \((h, k)\) is the vertex. Now use the data to solve for \(a, h \) and \(k \).
(i) We know that the vertex in this case is \((1, 4)\), so \(h = 1 \) and \(k = 4 \). This means that
\[f(x) = a(x - 1)^2 + 4, \]
and it remains to find \(a \).
(ii) We also know that the graph passes through the point \((-1, -8)\), and this means that \(f(-1) = -8 \) and therefore
\[a(-1 - 1)^2 + 4 = -8 \implies 4a + 4 = -8 \implies 4a = -12 \implies a = -3. \]
Conclusion: \(f(x) = -3(x - 1)^2 + 4 = -3(x^2 - 2x + 1) + 4 = -3x^2 + 6x + 1. \)

Section 2.6, problem 10: Label the width of the rectangle with \(x \) and the length of the rectangle by \(y \). If we think of \(y \) as the length of the side parallel to the river and \(x \) the length of the side perpendicular to the river, then the total amount of fencing is \(2x + y \) and therefore
\[2x + y = 2000 \implies y = 2000 - 2x. \]
The area of the rectangular field is \(xy \), and since \(y = 2000 - 2x \) we can express this as a function of \(x \) alone:
\[A(x) = x(2000 - 2x) = -2x^2 + 2000x. \]
The maximum value of the area occurs at the vertex of this quadratic function
\[x_v = -\frac{b}{2a} = -\frac{2000}{-4} = 500. \]
In words, the area is maximized when the width is \(x = 500 \) meters and the length is \(y = 2000 - 2 \cdot 500 = 1000 \) meters. The maximum area is \(500 \cdot 1000 = 500,000 \) square meters.